

P
R

O
F

E
S

S
I
O

N
A

L

S

T
U

D
I
E

S
:

T
h

e
o

r
y

a

n
d

P

r
a

c
t
i
c
e

2
0

2
1

 /
 9

 (
2

4
)

 75

JBE. CONCEPT AND APPLICATION

Lydia Mitkovets
PhD of Belarusian State University of Informatics and Radioelectronics Lithuania
Belarus

Daniel Sidorov
PhD of Belarusian State University of Informatics and Radioelectronics Lithuania
Belarus

Alevtina Gourinovitch
PhD of Belarusian State University of Informatics and Radioelectronics Lithuania
Belarus

Annotation
To save the information inside storage users try to reduce the files size to minimum by

using data compression software. It is a new algorithm for data compression in this article. It is j-
bit encoding (JBE). This algorithm manipulates each bit of data inside file to minimize the size
without losing any data after decoding. It is classified lossless compression. This basic
algorithm is combining with other data compression algorithms to optimize the compression
ratio. The implementation of this algorithm consists in a combination of various data
compression algorithms.

Keywords: compression, encoding, source encoding.

Introduction
Data compression is an algorithmic transformation of data to reduce the amount of data it
occupies. This algorithm is applied for efficiency using of storage and data transfer devices.

Compression is based on eliminating the redundancy contained in the source data. The
simplest example of redundancy is the repetition of fragments in the text (for example, words of
natural or machine language). Such redundancy is usually eliminated by replacing the repeated
sequence with a reference to the already encoded fragment with an indication of its length.
Another type of redundancy is related to the fact that some values in the compressed data are
more common than others. The reduction in data volume is achieved by replacing frequently
occurring data with short code words, and rare data with long ones (entropy coding).
Compression of data that does not have the property of redundancy (for example, random
signal or white noise, encrypted messages) is fundamentally impossible without loss.

At the heart of any compression method is the data source model, or more precisely, the
redundancy model. In other words, data compression uses some a priori information about what
kind of data is being compressed. Without such information about the source, it is impossible to
make any assumptions about the transformation that would reduce the volume of the message.
The redundancy model can be static, immutable for the entire compressed message, or
constructed or parameterized at the compression (and recovery) stage.

All data compression methods are divided into two main classes:
● Lossless compression
● Lossy compression
When using lossless compression, it is possible to completely restore the original data,

lossy compression allows you to restore data with distortions that are usually insignificant from
the point of view of further use of the restored data. Lossless compression is usually used for
the transmission and storage of text data, computer programs, less often-to reduce the volume
of audio and video data, digital photos, etc., in cases where distortion is unacceptable or
undesirable. Lossy compression, which is significantly more efficient than lossless compression,
is usually used to reduce the volume of audio and video data and digital photos in cases where
such reduction is a priority, and full compliance of the original and restored data is not required.

Data compression is a way to reduce storage cost by eliminating redundancies that
happen in most files. There are two types of compression, lossy and lossless. Lossy
compression reduced file size by eliminating some unneeded data that won’t be recognize by
human after decoding, this often used by video and audio compression. Lossless compression
on the other hand, manipulates each bit of data inside file to minimize the size without losing
any data after decoding. This is important because if file lost even a single bit after decoding,
that mean the file is corrupted.

Most compression methods are physical and logical. They are physical because look only
at the bits in the input stream and ignore the meaning of the contents in the input. Such a
method translates one-bit stream into another, shorter, one. The only way to understand and

P
R

O
F

E
S

S
I
O

N
A

L

S

T
U

D
I
E

S
:

T
h

e
o

r
y

a

n
d

P

r
a

c
t
i
c
e

2
0

2
1

 /
 9

 (
2

4
)

8 76

decode of the output stream is by knowing how it was encoded. They are logical because look
only at individual contents in the source stream and replace common contents with short codes.
Logical compression method is useful and effective (achieve best compression ratio) on certain
types of data [1].

RELATED ALGORITHMS
A. Run-length encoding
Run-length encoding (RLE) is one of basic technique for data compression. The idea

behind this approach is this: If a data item d occurs n consecutive times in the input stream,
replace the n occurrences with the single pair nd [1]. RLE is mainly used to compress runs of
the same byte. This approach is useful when repetition often occurs inside data. That is why
RLE is one good choice to compress a bitmap image especially the low bit one, example 8-bit
bitmap image.

B. Burrows-wheeler transform
Burrows-wheeler transform (BWT) works in block mode while others mostly work in

streaming mode. This algorithm classified into transformation algorithm because the main idea
is to rearrange (by adding and sorting) and concentrate symbols. These concentrated symbols
then can be used as input for another algorithm to achieve good compression ratios. Since the
BWT operates on data in memory, you may encounter files too big to process in one fell swoop.
In these cases, the file must be split up and processed a block at a time [2]. To speed up the
sorting process, it is possible to do parallel sorting or using larger block of input if more memory
available.

C. Move to front transform
Move to front transform (MTF) is another basic technique for data compression. MTF is a

transformation algorithm which does not compress data but can help to reduce redundancy
sometimes [4]. The main idea is to move to front the symbols that mostly occur, so those
symbols will have smaller output number. This technique is intended to be used as optimization
for another algorithm likes Burrows-wheeler transform.

D. Arithmetic coding
Arithmetic coding (ARI) is using statistical method to compress data. The method starts

with a certain interval, it reads the input file symbol by symbol, and uses the probability of each
symbol to narrow the interval. Specifying a narrower interval requires more bits, so the number
constructed by the algorithm grows continuously. To achieve compression, the algorithm is
designed such that a high-probability symbol narrows the interval less than a low-probability
symbol, with the result that high-probability symbols contribute fewer bits to the output.
Arithmetic coding, is entropy coder widely used, the only problem is its speed, but compression
tends to be better than Huffman (other statistical method algorithm) can achieve [1]. This
technique is useful for final sequence of data compression combination algorithm and gives the
most for compression ratio.

PROPOSED ALGORITHM
J-bit encoding (JBE) [7] works by manipulate bits of data to reduce the size and optimize

input for another algorithm. The main idea of this algorithm is to split the input data into two data
where the first data will contain original nonzero byte and the second data will contain bit value
explaining position of nonzero and zero bytes. Both data then can be compress separately with
other data compression algorithm to achieve maximum compression ratio. Step-by-step of the
compression process can be describe as below:

1. Read input per byte, can be all types of file.
2. Determine read byte as nonzero or zero byte.
3. Write nonzero byte into data I and write bit ‘1’ into temporary byte data, or only write

bit ‘0’ into temporary byte data for zero input byte.
4. Repeat step 1-3 until temporary byte data filled with 8 bits of data.
5. If temporary byte data filled with 8 bits then write the byte value of temporary byte data

into data II.
6. Clear temporary byte data.
7. Repeat step 1-6 until end of file is reach.
8. Write combined output data:

а) Write combined output data;
б) Write data I.
в) Write data II.

9. If followed by another compression algorithm, data I and data II can be compress
separately before combined (optional).

P
R

O
F

E
S

S
I
O

N
A

L

S

T
U

D
I
E

S
:

T
h

e
o

r
y

a

n
d

P

r
a

c
t
i
c
e

2
0

2
1

 /
 9

 (
2

4
)

 77

Figure 1 shows visual step-by-step compression process for J-bit encoding. Inserted
original input length into the beginning of the output will be used as information for data I and
data II size.

Figure 1. Step-by-step compression process for J-bit encoding

As for step-by-step of the decompression process can be describe below:
1. Read original input length.
2. If was compressed separately, decompress data I and data II (optional).
3. Read data II per bit.
4. Determine whether read bit is ‘0’ or ‘1’.
5. Write to output, if read bit is '1' then read and write data I to output, if read bit is '0'

then write zero byte to output.
6. Repeat step 2-5 until original input length is reach.

COMBINATION COMPARISON
Four combinations of data compression algorithm are used to find out which

combination with the best compression ratio.
The combinations are:

1. BWT+MTF+ARI.
2. BWT+RLE+ARE.
3. RLE+BWT+MTF+RLE+ARI (as used in [2]).
4. RLE+BWT+MTF+JBE+ARI.

Those combinations are tested with 6 types of files. Each type consists of 80 samples.
Each sample has different size to show real file system condition. All samples are
uncompressed, this include raw bitmap images and raw audio without lossy compression.

Figure 2. Samples for the experiment

PRACTICAL APPLICATION OF JBE
The structural data compression system looks like this:
Source Data –> Encoder –> Compressed Data –> Decoder –> Recovered Data
In this scheme, the data generated by the source is defined as the source data, and its

compact representation is defined as compressed data. The data compression system consists
of an encoder and a source decoder. The encoder converts the source data to compressed

P
R

O
F

E
S

S
I
O

N
A

L

S

T
U

D
I
E

S
:

T
h

e
o

r
y

a

n
d

P

r
a

c
t
i
c
e

2
0

2
1

 /
 9

 (
2

4
)

8 78

data, and the decoder is designed to recover the source data from the compressed data. The
recovered data generated by the decoder can either exactly match the original data of the
source, or slightly differ from them.

In lossless compression systems, the decoder recovers the source data absolutely
accurately, so the structure of the compression system is as follows:

Data Vector X –> Encoder –> B (X) –> Decoder - > X

The vector of source data X to be compressed is a sequence X = () of finite

length. The samples – the components of the vector X – are selected from the finite alphabet

of data A. In this case, the size of the data vector n is limited, but it can be arbitrarily large.
Thus, the source at its output forms as data X a sequence of length n from the alphabet A.

The vector of source data X to be compressed is a sequence B(X) = (),

размер которой k зависит от X. Let's call B(X) the codeword assigned to vector X by the
encoder (or the codeword into which vector X is transformed by the encoder). Since the
compression system is non-destructive, the same vectors must correspond to the

same code words B() = B().

EXAMPLE USING BWT+MTF+ARI
Let the input string be "ABACABAА".
1. BWT.
The conversion is performed in three stages. At the first stage, a table of all cyclic shifts

of the input string is compiled. At the second stage, lexicographic (in alphabetical order) sorting
of the table rows is performed. In the third step, the last column of the conversion table is
selected as the output row. The following example illustrates the described algorithm:

Figure 3. BWT conversion algorithm

Thus, the result of the BWT(s) algorithm is "BCABAAAA".
2. MTF.
Initially, each possible byte value is written to a list (alphabet), in a cell with a number

equal to the byte value, i.e. (0, 1, 2, 3, ..., 255). This list changes as the data is processed. As
the next character arrives, the number of the element containing its value is sent to the output.
After that, this symbol moves to the beginning of the list, shifting the remaining elements to the
right.

Modern algorithms (for example, bzip2) use the BWT algorithm before the MTF algorithm,
so as an example, consider the string S = "BCABAAAA” obtained from the string "ABACABAA"
as a result of the Burroughs-Wheeler transformation (more on it later). The first character of the
string S = "B" is the second element of the alphabet "ABC", so the output is 1. After moving 'B'
to the beginning of the alphabet, it takes the form"BAC". Further work of the algorithm:

Table 1

MTF conversion algorithm

Symbol List Output

B ABC 1

C BAC 2

A CBA 2

B ACB 2

A BAC 1

A ABC 0

P
R

O
F

E
S

S
I
O

N
A

L

S

T
U

D
I
E

S
:

T
h

e
o

r
y

a

n
d

P

r
a

c
t
i
c
e

2
0

2
1

 /
 9

 (
2

4
)

 79

A ABC 0

A ABC 0

Thus, the result of the MTF(S) algorithm is “12221000".
3. ARI.
Trying on arithmetic coding we get:
ARI(S)=101110100111101001001000
Thus, if we are dealing with eight-bit characters, then the input is 8*8=64 bits, and the

output is 24, that is, the compression ratio 62,5%.
Consider the same example, but with the addition JBE - BWT+MTF+JBE+ARI:
Points 1 and 2 are the same.
4. JBE.

Table 2
Algorithm for applying JBE encoding

Original Data 1 Temporary byte data Data 2

1 00000001 1 00000001 1 00000001 248 11111000

2 00000010 2 00000010 1 00000001 - -

2 00000010 2 00000010 1 00000001 - -

2 00000001 2 00000010 1 00000001 - -

1 00000000 1 00000001 1 00000001 - -

0 00000000 - - 0 00000000 - -

0 00000000 - - 0 00000000 - -

0 00000000 - - 0 00000000 - -

At the output, we have a record of the original input length + Data record I + Data record

II =24812221.
5. ARI.
Trying on arithmetic coding we get:
ARI(S)=101110111011001100110110
Thus, if we are dealing with eight-bit characters, then the input is 8*8=64 bits, and the

output is 24, that is, the compression ratio 62,5%.

RESULT
Figure 4 shows that 8-bit bitmap images are compressed with good compression ratio by

algorithms that combined with J-bit encoding.

P
R

O
F

E
S

S
I
O

N
A

L

S

T
U

D
I
E

S
:

T
h

e
o

r
y

a

n
d

P

r
a

c
t
i
c
e

2
0

2
1

 /
 9

 (
2

4
)

8 80

Figure 5 shows that 24-bit bitmap images are compressed with better compression ratio
by algorithms that combined with J-bit encoding. A 24-bit bitmap image has more complex data
than 8 bits since it is storing more color. Lossy compression for image would be more
appropriate for 24-bit bitmap image to achieve best compression ratio, even thought that will
decrease quality of the original image.

Figure 6 shows that text files are compressed with better compression ratio by algorithms
that combined with J-bit encoding.

Figure 7 show that binary files are compressed with better compression ratio by
algorithms that combined with J-bit encoding.

Figure 8 shows that wave audio files are compressed with better compression ratio by
algorithms that combined with J-bit encoding.

Figure 9 shows that video files are compressed with the best compression ratio using
algorithms combined with J-bit encoding.

Conclusion
So, in the course of the study, a modified data compression algorithm was proposed and

an experiment was conducted using 6 file types with 80 different sizes for each type. As a
result, 4 combinational algorithms were tested and compared. The proposed algorithm gives a
better compression ratio when inserted between" forward motion transformation " (MTF) and
arithmetic encoding (ARI). The study provides both the theoretical part and practical examples.
The considered algorithm has the prospect of introducing other data compression algorithms
into the structure.

References
1. Salomon, D. 2004. Data Compression the Complete References Third Edition.

Springer-Verlag New York, Inc.
2. Nelson, M. 1996. Data compression with Burrows-Wheeler Transform. Dr. Dobb's

Journal.
3. David Salomon, 2010. Handbook of Data Compression Fifth Edition. Springer-Verlag

New York, Inc.
4. Agus Dwi Suarjaya, 2012. A New Algorithm for Data Compression Optimization.

Information Technology Department Udayana University. Bali, Indonesia.

Received: 23 May 2021
Accepted: 27 January 2022

