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Annotation 
The article research networks traffic self-similarity analysis methods. Applications of Hurst 

statistics for calculation of Hurst coefficient, frequency/wave features estimators methods - 
Periodograms, Whittle, Abby-Weich have been analyzed. Suitability of employed methods for 
analysis was tested by the way of computer-based simulation. The analyzed methods has been 
tested by applying Fractan programme’s R/S statistics, Selfis programme by applying time 
analysis and frequency/wave features’ estimation methods. R. Weron’s (2004) algorithm of 
generation of random standard stable values has been used for forming self-similar network 
traffic time series, where stability index α=1.8 (H=0.56). The results obtained with Fractan and 
Selfis show that Hurst coefficient changes from 0.53 to 0.70, the stability index changes from 
0.53 to 1.89.  

Key words: self-similarity, Hurst coefficient, α-stable distribution, traffic burstiness. 
 
Introduction 
The self-similarity phenomenon is explained by a character of network service usage 

which is attributed with burstiness. In fact, data is inherently “bursty” in that it occurs in short 
bursts of communications followed by long periods of silence. Indeed, one can characterize 
data communication users who wish network resources to send their data as follows: users 
don’t warn you exactly when they will demand access; one cannot predict how much they will 
demand, most of the time users do not need access to network; when users ask for it, they want 
immediate access (Kleinrock, 2002). Such situation is often met in distance learning networks 
when a learner receives tasks and sends one’s answers only at the same time. 

Empirical research of computer network packet traffic shows that it is attributed with self-
similarity (Erramilli, Narayan, Willinger, 1996, Петров, 2004, Петров, 2003, Park, Willinger, 
2000, Leland, Taqqu,  Willinger, Wilson, 1994). After estimating the latter feature, it is possible 
to adequately prognosticate the change of traffic and to apply the prognosis results in increase 
of network throughput and improvement or its QoS quality of service, while regulating packet 
latency, fluctuation restriction and packet loss transportation on data and physical OSI layers 
(He, Gao, Hou, Park, 2004). 

In contemporary university studies, computer networks are widely used; they usually 
undergo unprognosticated overloads. For effective network control, monitoring of network nodes 
is necessary to be carried out in order to prognosticate network node’s loads and overloads. 
Researches have proved that classical Markov’s models which are widely used in estimation of 
classical telephone network indexes are not suitable for modelling of contemporary computer 
network parameters. Network parameters’ estimations obtained by a classical way are not exact 
and lead to unreasoned prognoses (Kaj, 2002). On the base of empirical research of 10 Mbps 
local area network Ethernet network flow carried out at Bellcore laboratory (120 people using 
network services, New Jersey State) by A. Erramilli, O. Narayan and W. Willinger in 1989, it was 
found out that Ethernet network flow characterisations bear some fractal features and are 
attributed with self-similarity with long-range dependence (Erramilli, Narayan, Willinger, 1996). I. 
Kaj (2002) in the monograph suggests a number of methods for statistical analysis of features 
of contemporary communication network flows by applying opportunities of contemporary 
mathematical modelling. V. V. Petrov (2003) analysis network flow as a fractal process 
attributed with a second-row statistical self-similarity characterised by a fractal measure. 
Lazaros K. Gallos, Chaoming Song, Herna´n A. Makse (2007) relate fractality with self-similarity 
of complex networks. For modelling and description of network processes methods of non-linear 
analysis of self-similar processes are applied, while estimating heavy-tails and regarding 
asymmetry, leptokurtosis and a short-long-range memory effect which are peculiar to 
distributions of network flows.    

The parameter of self-similarity of flows is an important index of network’s operation; and 
there are no worked out means for its dynamic monitoring in contemporary computer networks. 
Self-similarity of network flow impact the following: network Quality of Service (QoS), regulation 
of network flow, bandwidth, decreases loss of packets, decreases delay. Such flows are 
attributed with heavy tails, asymmetry and leptokurtosis. QoS refers to the capability of a 
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network to provide better service to selected network traffic over various technologies. These 
technologies allow you to measure bandwidth, detect changing network conditions (such as 
congestion or availability of bandwidth), and prioritize or throttle traffic. For investigation of 
peculiarities of self-similar flows, a big number of methods are proposed. Research of self-
similarity of a network is a complex task for solution of which methods and technologies are 
being constantly improved. Design of network self-similarity analysers is an incompletely solved 
scientific problem, especially in analysis of a network flow in real-time mode. Technologies of 
self-similarity research is a multiply task encompassing both measurement hardware and 
software recording and accumulating information on the flow; also, it includes analysers of 
accumulated data and selection and estimation of theoretical models of a self-similar flow. 
Familiar computer programmes for network flow research operate with data files prepared in 
advance; for their management, a graphic interface without team management means, Fractan, 
Selfis, etc. is used. Data measurement and accumulation in a computer network must be 
carried out in real-time mode and not interfere computer’s work. Analysis means also must be 
attributed with pace ensuring dynamic flow analysis. Thus, methods that are reliable but 
computer time consuming ones are not suitable for analysis as a maximum method; that is why 
it is best to apply robust analysis methods. 

This work aim is by using freely distributed programmes to estimate parameters data flow 
of network node by applying the algorithm of simulation of time series for validation of results. 

 
1. Methods for analysis of self-similarity 
One of the most popular methods for calculation of self-similarity is application of Hurst 

statistics for estimation of Hurst coefficient. Hurst statistics are applied for time series 
tx  not 

satisfying normal distribution (Beran, 1998). According to G. Samorodnitsky (2006), stochastic 
process 0 ),( ttY is self-similar if it is possible to find such H which would satisfy the equation 

for all c>0: 

)0),(()0),((   ttYctctY H
d

.   (Samorodnitsky, 2006) 


d

 means that this equation is valid in all function’s points except equality in distribution. 

If aggregated time series 
tx  have stationary increments, thus, partial sums 

nn XXXS  ...21 , where n=1,2,..., when 1n , o ,...2,1),1()(  iiYiYXi  

describe a stationary process ,...),( 21 XXX  , satisfying the equation 1SnS H
n  . Here, the 

exponent H characterises significance of distribution of a stationary process X and is called 
Hurst coefficient. The value of Hurst coefficient characterises the type of time series memory. If 
Hurst coefficient H=0.5, then members of the sequence are random and every subsequent 
member does not depend on previous queue members; in an opposite case, we can state that 
previous events recorded in time series bear a constant impact on further processes, and this 
impact is the stronger the more event is closer to the past. Such series are invariant with regard 
to time. 

If, then the process characterised by the time series is anti-dispersive, i.e. we can state 
that if increase is observed in one period, in other period decrease will definitely follow, and the 
probability is higher the closer H is to 0. In this case, correlation is negative and draws closer to 
0.5. Such series usually bear a feature of high changeability and are formed of frequent 
increases and decreases. 

If 0,15,0  H , thus it is a persistent process with long-range memory, also called 

Markov dependence, i.e. if the process was bound to increase in the past, in the future it will 
retain this peculiarity with the bigger probability the closer H is to 1. Usually, such series are 
called trend resistant, when H gets closer to 0.5, more trends (noises) appear in the series. 
Therefore, while estimating self-similarity of a time series, the value of Hurst coefficient, i.e. an 
interval where it occurs, is very significant. For calculation of Hurst statistics, two methods for 
series estimation are usually applied: time analysis and estimators of frequency/wave features 
(Karagiannis, Faloutsos, Molle, 2003).  

While investigating dependences of gradual selected sequence characteristics and 
special m size block, by applying specific statistics, the following methods are usually applied: 
absolute value (absolute moments), variance, R/S (rescaled adjusted range), variance of 
residuals (Taqqu, Teverovsky, 1998, Karagiannis, Faloutsos, Riedi, 2002). 

Estimators of frequency/ wave features are grounded on frequency wavelet features. The 
following methods are usually applied for analysis: periodograms (Taqqu, Teverovsky, 1998, 
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Karagiannis, Faloutsos, Riedi, 2002), whittle (Karagiannis, Faloutsos, Riedi, 2002), Abby-Veich 
(Karagiannis,  Faloutsos, Molle, 2003). 

Fractan (2003) programme calculates Hurst coefficient only by employing R/S statistics. 
The designed programme SSE (Self-Similarity Estimator) employs robust methods of time 
series calculation; they bear some errors occurring in empirical data, capacities of filtering and 
high calculation pace: FamaRoll (Fama, Roll, 1971), McCulloc (1986), regression (Belovas, 
Kabašinskas, Sakalauskas, 2005, Koutrouvell, 1981) and moments’ (Koutrouvell, 1981, Press, 
1972). For calculation of Hurst statistics, 11 different methods are applied. We will shortly 
discuss them. 

The oldest and most popular is the R/S statistics method grounded on analysis of time 
sequences, employed in programmes Fractan (Fractan, 2003) and Selfis (Karagiannis, 2002). 

Here, formed and aggregated time queues 
tx  in the network node M, Hurst coefficient is 

calculated according to the formula )2/log(/)/log( nSRH  , where H – Hurst coefficient, 

R/S – r/s statistics acquired according to the formula: 



 





 








n

i
ti

i i
titi

xx
n

xxMinxxMax

nS

nR
SR

1

2

1 1

)(
1

))(())((

)(

)(
/

 

, (Samorodnitsky, 2006) 

 here n 1 , where n – number of sequence members, 

tx  – value of an average 

row 
tx , and 



 


1

)(
i

ti xx  – the formed cumulative row describing the sum of changes during 

time . According to Hurst (1951), it can be stated that majority of phenomena taking place in 

nature can be attributed with the right expression: 







ncn

nS

nR
M H ,~

)(

)(
, where c – 

constant (Park, Willinger, 2000). It was estimated that when a number of queue members 
(amount of observations) increases, Hurst coefficient gets closer to the value 0.5, i.e. the 
memory effect decreases.    

In the programme Selfis, besides discussed R/S statistics, six more methods of 
calculation of Hurst coefficient are employed; we will discuss them. 

The method of absolute moments (Taqqu, Teverovsky, 1998, Karagiannis, Faloutsos, 
Riedi, 2002, Taqqu, Teverovsky, 1998, Ilnickij, 2004) is based on N length time sequence 

division into blocks of m length, while forming partial sequences )()( kX m
, where k=1,2,...,[N/m]. 

Then, the n moment of the sequence is calculated: 





km

mki
i

mN

k

nmm
n X

m
kkurXkX

mN
AM

1)1(

(m)
/

1

)()( 1
)(X  ,|)(|

/

1
. (Ilnickij, 2004) 

The sequence )(mX behaves asymptotically like 
)1( HnCm  for high m, thus, the obtained 

moment )(m
nAM  is proportional to 

)1( Hnm . 

The method of aggregate variance formed for the sequence )()( kX m
 calculates sample 

variance (Beran, 1994): 





]/[

1

2)( ))((
/

1
)(

mN

k

mm XkX
mN

XVar . 

The sequence )()( kX m
 behaves asymptotically like 

1Hm , if it has a finite variance, 

thus, for high N/m the sequence of variances asymptotically is proportional to
22 Hm . 

According to the method of variance of residuals proposed by Peng (Karagiannis, 
Faloutsos, Riedi, 2002, Taqqu, Teverovsky, 1998), variances of residuals of linear dependence 
are calculated by the least square method for m-length sequence subsets:   





j

i
i

m

j

XjYbjajY
m 11

2 )(kur  ,))((
1

. (Peng, Buldyrev, Stanley, Goldberger, 1994) 
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For all obtained variances proportional to 
Hm2

, a common median is calculated and log-
log-type dependence is estimated between m and incline angle 2H, if it is linear, then H is 
estimated by regression.   

By the method of periodograms an iterative function is described: 
2

1

)(
2

1
)( 




N

j

ijejX
N

I 


 , (Taqqu, Teverovsky, 1998) 

where ν – frequency, N – length of a sequence, X(j) – time queue. When I(ν) has a finite 
variance, then an iterative function describes density of a sequence X which, in case of long-

memory is proportional to 
H21||  , sequences close to the beginning of coordinates.   

The method of whittle is based on minimisation of maximum probability of a periodogram 
when a function of spectral density is known (Kokoszka, Taqqu, 1996): 







]2/)1[(

1
*

*

),(

)(
)(

N

j j

j

f

I
Q




 .  

Here, η is a function value of a vector minimising the aim function 
*Q by calculating which 

Hurst coefficient’s value and the relied interval are obtained, when a function of spectral density 
is known.  

By Abry-Veitch (Karagiannis, Faloutsos, Molle, 2003, Karagiannis, Faloutsos, Riedi, 
2002, Abry, Veitch, 1998) method, Hurst coefficient is estimated while employing 
transformation of wavelet sequence.    



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
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

 



 
2

2

21
2

1

2

1

2

1

2

1

2

1

2

1

2

1
),(ˆ

j

jj
j

j
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j

jj
j

j
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j
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jjj

j

jj
jj

jSjSS

SjSjS

jjH


  

Here 









 k x

j
j kjd

n
2

2 |),(|
1

log , weights – 12 2/))2(ln(  j
j nS , 2|),(| kjd x – a 

measure of process energy during time kj2  sequence 02 vj , when 0v  is selected from the so 

called mother wavelet, and n – length of a partial sequence. The method is widely described in 
the article by P. Abry and D. Veitch (1998). 

According to Samorodnitsky, a self-similar symmetric process that is described by 
formula and attributed with infinite variance is an α-stable process (Samarodnitsky, Taqqu, 
1994), if for every random process Y(t) heavy tails can be described according to the formula: 

 cxxtYP ~)|)((|  (Samarodnitsky, Taqqu, 2006), 

here 0 o ,  cx , thus, when 21    the mean is finite, and when 10    – 

infinite. 

While estimating any stable random value ),,( S , it is recommended to estimate 

four stability parameters:  
 α – stability index ]2,0( , also called a tail index, defining burstiness of a process, 

 β – asymmetry index ]1,1[ , defining shift of a process with regard to zero, 

 σ – measure index, σ>0 and defines amount of process elements, 
 μ – position index R . 

Robust time series estimation laws are peculiar with resistance to errors and high 
calculation pace. In this work, we employ empirical quantum methods in order to estimate 
parameters of aggregated queues.    

One of the oldest employed methods (Fama, Roll, 1971) method based on estimators of 
stable law parameters α, σ, β, μ, when β=0, μ=0, o 21   . A stability index is estimated by 
evaluating a time queue stability index under a condition: 

p
xx

S pp 






  

 ˆ2

ˆˆ 1
ˆ   
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It was estimated that p=0.95, 0.96, 0.97 were selected best. 
In his works, McCulloch (McCulloch, 1986) has improved methods of estimation of stable 

values designed by FamaRoll, worked out interpolate tables. Two functions calculated by 
employing time queue quartiles are defined: 

05.095.0

05.005.095.0

25.075.0

05.095.0 2
  

xx

xxx
ir

xx

xx








     

 
Stable parameters are calculated by interpolating values according to given rows.   
The regression method for estimation of stable value parameters was proposed by 

Kotrouvelis (1981), I. Belovas, A. Kabašinskas and L. Sakalauskas described his applications 
for financial series more widely (2005). For calculation of α and σ the following sums are 

employed: 



K

k
kk wys

1
1 , 




K

k
kys

1
2 , 




K

k
kws

1
3 , 




K

k
kws

1

2
4 , where the parameters 

employed in the sums are calculated as follows: ||log kk tw  , 

2|)(log(|log( knk ty  ,
25

k
tk


 . α and σ are calculated by applying formulas: 

2
3

32

4

1

sK

ssK

S

S




 , 




/1

2
34

3124exp5.0~























sKs

ssss
, 

here ~ an absolute deviation, K recommended value 10. 

For calculation of β and μ the following sums are employed: 



L

l
lus

1

2
5 , 




K

k
kws

1

2
4 , 





K

k
lnl ugqs

1
6 )( , 




L

l
lluqs

1
7 , 




L

l
lqs

1

2
8 , 




L

l
lnl ugus

1
9 )( , where the parameters 

employed in the sums are calculated as follows: 
50

l
ul


 , )(

2
tan|| lll usignuq 







  , o 

L=15. β and μ are calculated by applying formulas: 

2
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sss

ssss




 ,  h
sss

ssss

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
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






2
785

7698~ . 

A more thorough description of the calculation methods can be found in the article by 
Kotrouvell (1981). 

The method of moments for estimation of stable value parameters was proposed by S. J. 
Press (1972), I. Belovas, A. Kabašinskas ir L. Sakalauskas described his applications for 
financial series more widely (Belovas, Kabašinskas, Sakalauskas, 2005). This method is based 

on calculation of a time series empirical characteristic function: 



n

i

itxie
n

t
1

1
)(̂ , where n – 

number of series elements, ix  – the i-th series element, t – a selected series value. The stable 

parameters are suggested to be calculated by employing the following formulas (Press, 1972): 
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Here 1t , 2t , 3t , 4t – selected values satisfying equations 21 tt   and 43 tt  , and 




























n

i
i

n

i
i

tx

tx
tu

1

1

)cos(

)sin(
arctan)( . According to the suggestion by Kotrouvelis, the following values 

are to be selected best: 2.01 t , 8.02 t , 1.03 t , 4.04 t  (Koutrouvell, 1981). 

 
2. Testing Analysis methods by Simulation 
Suitability of employed algorithms for analysis was tested by the way of computer-based 

simulation. For simulation of random flows, formulas were applied for generation of standard 

stable values )0,1,(S , when 1  (Weron, 2004): 









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/)1(

/1
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)}(sin{
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SX , 

here 













 2
tanarctan

B , 

)2/(1
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2
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


















S , o V uniformly 

distributed on 







2
,

2


 and an independent exponential random variable W with mean 1. The 

programme has a foreseen possibility to indicate amount of generated files and amount of 
elements in every file.   

For simulation, series attributed with self-similarity were selected with parameters: α=1.8 
(H=0.56), β=0, σ=1, μ=0. Obtained time series were estimated by Fractan and Selfis. Fractan 
measures  auto-correlation coefficient, R/S statistics, fractality, visualises data (draws 
dependence graphs and attractors). Selfis measures Hurst coefficient by employing time 
analysis methods for investigated gradual dependence of selected sequence characterisations 
and a special m size block by applying specific statistics. The following methods are usually 
employed for analysis: absolute value (absolute moments), variance, R/S (rescaled adjusted 
range), variance of residuals (Taqqu, Teverovsky, 1998). Estimations of frequency/wave 
features are grounded on frequency features of wavelets. The following methods are usually 
employed for analysis: periodograms, whittle, Abby-Veich. 

As we can see in Table 1, Hurst coefficient varies from 0.61 to 0.79; thus, the process of 
passed data described by aggregated series is a persistent long-range memory process. It can 
be stated approximately two thirds of received series are attributed with long-term memory. 
After analysing results of analysis of Hurts coefficient obtained by Fractan programme, we can 
state the following:    

1. obtained results factually do not depend (matched 98% of the results) on the way of 
series aggregation (the methods of sum and medium were employed); 

2. obtained results do not depend on a size of selected time interval t [100ms, 
500ms, 1s] and 89.4% of obtained results matched; 

3. obtained results do not depend on a data flow (minimum, medium, maximum ones 
were selected) and 88% of obtained results matched. 

These conclusions show that analysed aggregated series describe a self-similar process 
attributed with short-range or long-range memory. 

In Table 2 one can see that approximately 43% of measured series are attributed with 
long-range memory, and the medium of coefficient 0.56 shows a weak dependence, 
approximately 47% of series are attributed with short-range memory, and the medium of 
coefficient 0.28 shows medium dependence. With regard to obtained results, we can state that 
the programme Selfis estimated that the vast majority of series are attributed with short-range or 
long-range memory; this proves self-similarity of series. It can be observed that obtained results 
depend on neither the method of aggregation of series nor time interval; this also proves their 
self-similarity. Analysis by applying Selfis programme shows the following: 

4. obtained results factually do not depend (matched 98% of the results) on the way of 
series aggregation (the methods of sum and medium were employed); 

5. a very weak dependence of obtained results from a size of a selected time interval 
t [100ms, 500ms, 1s] (matched 65.63% of the results) was estimated; 
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6. a very weak dependence of obtained results from a data flow when minimum, 
medium, maximum flow is selected (matched 63.5% of the results) was estimated. 

 
Table 1

Distribution of Hurst coefficient values 
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It can be stated that the investigated series describe the self-similar process attributed 

with short-range or long-range memory. 
Between Hurst coefficient and the parameter alfa, the proportion H=1/α, when 1<α<2, 

β=0 was set by G. Samarodnitsky (2006). In order to more precisely estimate obtained 
calculation results, values of aggregated Hurst coefficient were divided into five intervals: 0<H of 

0.1H  – non-defined values, 0<H<0.5 – a series describes the self-similar process with short-
range memory, H=0.5 – a series describes noise, 6.05.0  H  – a series described the self-
similar process with weakly expressed long-range memory, 0.6<H<1.0 – a series described the 
self-similar process with long-range memory. In order to highlight suitability of applied methods 
for estimation of time series in the worked out programme, obtained results by every method 
are displayed in a graph, and calculation results obtained by Fractan and Selfis programmes 
are generalised by applying percentage estimations. 

 
Table 2 

Distribution of Hurst coefficient values 
 

  5.00  H  0.5<H<1.0 H=0.5 


tx

 

47.07% 42.82% 8.63% 

100ms 500ms 1000ms 100ms 500ms 1000ms 100ms 500ms 1000ms 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
e

d
iu

m
 

M
ax

im
al

 

M
in

im
al

 

M
e

d
iu

m
 

M
ax

im
al

 

M
in

im
al

 

M
e

d
iu

m
 

M
ax

im
al

 

M
in

im
al

 

M
e

d
iu

m
 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 



 

 

 

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
: 

T
h

eo
ry

 a
n

d
 P

ra
ct

ic
e 

 
2

0
2

0
 /

 7
 (

2
2

) 

8 44 

42
.8

6%
 

52
.3

8%
 

51
.4

3%
 

64
.2

9%
 

48
.3

5%
 

40
.0

0%
 

47
.6

2%
 

45
.2

4%
 

31
.4

3%
 

42
.8

6%
 

33
.3

3%
 

37
.1

4%
 

25
.0

0%
 

43
.9

6%
 

54
.2

9%
 

47
.6

2%
 

44
.0

5%
 

57
.1

4%
 

14
.2

9%
 

14
.2

9%
 

11
.4

3%
 

10
.7

1%
 

7.
69

%
 

5.
71

%
 

0.
00

%
 

10
.7

1%
 

2.
86

%
 


tx

 
47.05% 45.05% 7.90% 

100ms 500ms 1000ms 100ms 500ms 1000ms 100ms 500ms 1000ms 
M

in
im

al
 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

M
in

im
al

 

M
ed

iu
m

 

M
ax

im
al

 

42
.8

6%
 

44
.9

0%
 

34
.2

9%
 

64
.2

9%
 

48
.3

5%
 

40
.0

0%
 

47
.6

2%
 

53
.5

7%
 

47
.6

2%
 

46
.4

3%
 

45
.9

2%
 

60
.0

0%
 

25
.0

0%
 

42
.8

6%
 

54
.2

9%
 

52
.3

8%
 

38
.1

0%
 

40
.4

8%
 

10
.7

1%
 

9.
18

%
 

5.
71

%
 

10
.7

1%
 

8.
79

%
 

5.
71

%
 

0.
00

%
 

8.
33

%
 

11
.9

0%
 

 
Conclusions 
Applications of Hurst statistics for calculation of Hurst coefficient analyzed and tested by 

using freeware programme Fractan, the methods of frequency/wave features estimators - 
Periodograms, Whittle, Abby-Weich have been analyzed and tested by using freeware 
programme Selfis. 

The carried out research show that simulated random flow (α=1.8, H=0.56) investigated 
by Fractan and Sefis have a Hurst coefficient of which varied from 0.53 to 0.70; this 
corresponds to variation of the stability index from 1.43 to 1.89. 
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